Контрольная работа. Безопасность жизнедеятельности. Авторская работа.
Поиск
Выбрать язык
Анонс статей

postheadericon Контрольная работа. Безопасность жизнедеятельности. Авторская работа.

Время чтения статьи, примерно 26 мин.

Основы безопасности жизнедеятельности

ТЕМА:

1. Прогнозирование чрезвычайных ситуаций. Прогнозирование природных и техногенных катастроф. Порядок выявления и оценки обстановки.

2. Боевые традиции вооружённых сил России. Патриотизм и верность воинскому долгу – основные качества защитника отечества.

3. Составьте текст речевого сообщения при аварии на химически опасном объекте.

 

Задание 1. Прогнозирование чрезвычайных ситуаций. Прогнозирование природных и техногенных катастроф. Порядок выявления и оценки обстановки.

1.1. Прогнозирование чрезвычайных ситуаций – комплекс правовых, организационных, экономических, инженерно-технических, экологозащитных, санитарно-гигиенических, санитарно-эпидемиологических и специальных мероприятий, направленных на организацию наблюдения и контроля за состоянием окружающей природной среды и потенциально опасных объектов, прогнозирования и профилактики возникновения источников чрезвычайной ситуации, а также на подготовку к чрезвычайным ситуациям.

Экология, как понятие, приобрела интегральный характер, обогатилась новыми знаниями и стала наукой, которая затрагивает все формы экологической, социальной и духовной жизни человека и общества.

Существует ряд методов прогнозирования чрезвычайных ситуаций, природных и техногенных катастроф. Рассмотрим на примере Брянской области ту работу служб, которую они проводят для предупреждения возникновения, а также развития чрезвычайных ситуаций.

Мониторинг и прогнозирование экстремальных природных и техногенных

чрезвычайных ситуаций на территории области

Прогнозирование экстремальных природных и техногенных чрезвычайных ситуаций на территории области осуществляется центром мониторинга и прогнозирования чрезвычайных ситуаций главного управления по делам ГОЧС области во взаимодействии с Брянским центром по гидрометеорологии и мониторингу окружающей среды в соответствии с Соглашением главного управления по делам ГОЧС Брянской области и Брянского центра по гидрометеорологии и мониторингу окружающей среды о взаимодействии при решении задач в области прогнозирования, предупреждения и ликвидации чрезвычайных ситуаций, а также с территориальными контрольными надзорными органами.

Главное управление по делам ГОЧС области получает прогностическую и фактическую информацию об опасных гидрометеорологических явлениях, данные о текущем состоянии погоды, прогнозы погоды на 1-3 суток в зонах чрезвычайных ситуаций, информацию об экстремально высоком загрязнении окружающей среды, прогнозы на 1-3 суток о возможности возникновения опасных гидрометеорологических явлений, прогноз погоды общего пользования на территории области на 1-3 суток, прогнозы максимальных уровней воды на основных реках области.

Кроме того, получает специализированную гидрометеорологическую информацию, в том числе данные гидрологических постов о текущем состоянии водных объектов, декадные и месячные прогнозы температуры воздуха и осадков, а также данные для составления прогнозов неблагополучных метеорологических условий, способствующих загрязнению атмосферного воздуха по г. Брянску и другую информацию.

Информацию для прогнозирования техногенных чрезвычайных ситуаций главное управление по делам ГОЧС области получает от территориальных Госгортехнадзорных органов.

Мониторинг состояния атмосферного воздуха

Система контроля состояния атмосферного воздуха включает:

Наблюдение за качеством воздуха в г. Брянске, которое осуществляется специалистами Брянского центра по гидрометеорологии и мониторингу окружающей среды.
Контроль качества атмосферного воздуха в рамках соблюдения требований санитарного законодательства в области охраны атмосферного воздуха, который осуществляют специалисты ФГУ «Центр Госсанэпиднадзора в Брянской области».
Брянский центр по гидрометеорологии и мониторингу окружающей среды мониторинг качества атмосферного воздуха в г. Брянске осуществляет на 4-х стационарных постах.

В приоритетный список загрязняющих веществ (ЗВ), подлежащих контролю в г. Брянске входят: пыль, диоксид серы, оксид углерода, диоксид и оксид азота, формальдегид, растворимые сульфаты, бенз(а)пирен.

Наибольший вклад в загрязнение атмосферы города вносят предприятия машиностроения (ОАО «Брянский машиностроительный завод», ОАО «Брянский Арсенал»), чёрной металлургии (ОАО «Бежицкий сталелитейный завод»), строительного комплекса (комбинат ОАО «Стройдеталь», ОАО «Брянский силикатный завод», ОАО «Промбетон»), Брянская ГРЭС, а также автомобильный транспорт.

В атмосфере города контролируется содержание таких примесей, как взвешенные вещества, диоксид серы, оксид углерода, диоксид и оксид азота, формальдегид, растворимые сульфаты, бенз(а)пирен.

По результатам наблюдений уровень загрязнения атмосферного воздуха г. Брянска повышенный (ИЗА – 5,39). В целом по городу среднегодовые концентрации по формальдегиду и бенз(а)пирену составляют 1,7 ПДК, по взвешенным веществам и диоксиду азота 1,0 ПДК.

По сравнению с 2002 годом в воздухе города снизились среднегодовые концентрации взвешенных веществ, оксида углерода, диоксида и оксида азота, остались без изменений среднегодовые концентрации диоксида серы, растворимых сульфатов и формальдегида.

1.2 ПРИРОДНЫЕ И ТЕХНОГЕННЫЕ ОПАСНОСТИ И РИСКИ СОВРЕМЕННОГО МИРА

Природные опасности и риски были, есть и будут всегда – они являются следствием закономерных процессов, происходящих на Земле. К природным опасностям относятся: землетрясения, цунами, извержения вулканов, ураганы, смерчи, сели, оползни, лавины, метели, бураны, наводнения, пожары, астероиды и др.

Среди крупнейших природных катастроф наибольшее распространение в мире имеют тропические штормы, наводнения, землетрясения и засухи. Эти типы катастроф составляют соответственно 33, 30, 15 и 11% от общего числа катастроф. На остальные виды катастроф приходится 11%.

В мире нет ни одного региона, где бы отсутствовали крупнейшие природные катастрофы. Среди континентов мира наибольшее количество катастроф приходится на азиатский континент (39% от общего количества катастроф, произошедших на Земле), далее идут Северная и Южная Америка (25%), Европа (14%), Африка (13%), Океания (10%).

Важнейшей тенденцией развития природных катастроф на Земле является снижение защищенности людей и техносферы от природных опасностей. По данным Всемирной конференции по природным катастрофам (Иокогама, 1994 г.), величина ущерба в мире от разрушительных природных явлений увеличивается ежегодно на 6%.

За период с 1962 по 1992 гг. количество катастроф с высоким ущербом (более 1% от валового годового продукта страны, где они произошли) возросло в мире в 4,1, количество погибших – в 2,1, а количество пострадавших – в 3,5 раза.

Стремительными темпами растут экономические потери от природных катастроф и, прежде всего, от тропических циклонов и наводнений. На их долю в 1990-1992 гг. пришлось до 85% прямых экономических потерь в мире.

Согласно данным Научного центра по эпидемиологическим катастрофам, с 1965 по 1992 г. в мире погибло от природных катастроф около 3,6 млн. человек, пострадало более 3 млрд., общий экономический ущерб составил 340 млрд. долларов, причем максимум пришелся на 1970-1974 гг., когда засухи в Африке послужили причиной массовой гибели людей.

Уже сейчас многие развитые страны, такие, например, как Япония, вынуждены тратить на борьбу с природными катастрофами не менее 5% своего годового бюджета (0,8% валового национального продукта). В некоторые годы эти затраты в Японии достигали 8% от годового бюджета. В Китае ежегодные ущербы от природных катастроф составляют в среднем 3-6% от валового национального продукта.

Говоря о характере и тенденциях рисков чрезвычайных ситуаций природного характера, необходимо признать, что с каждым годом они приобретают все более масштабный и устойчивый характер. Наблюдаемый на земном шаре рост природных катастроф за последние 30 лет многие ученые объясняют антропогенным воздействием и наблюдающимся глобальным изменением климата.

Природные бедствия носят все более синергетический характер, выражающийся в том, что одно природное явление вызывает целую цепочку других, порою более катастрофических процессов – пожары, взрывы, выбросы и разливы химических веществ. Синергетические катастрофы значительно увеличивают масштабы бедствий, людские потери и экономический ущерб, а также существенно усложняют принятие мер по смягчению последствий данных чрезвычайных ситуаций.

Рост количества природных катастроф в условиях увеличения плотности техносферы существенно повышает вероятность того, что в зону их риска будут вовлечены территории, насыщенные сложными инженерными сооружениями (АЭС, химические предприятия и др.).

Одной из причин роста количества природно-опасных явлений, увеличения жертв и материальных потерь от них является неудержимый рост человеческой популяции на Земле.

12 октября 1999 г. численность населения на земном шаре достигла 6 млрд. человек. Более 80% (4,8 млрд.) живут в развивающихся странах, на долю которых приходится почти весь прирост численности населения. Согласно последнему прогнозу ООН глобальная численность населения к 2050 г. составит 8,9 млрд. человек.

Еще более быстрыми темпами увеличивается городское население планеты. Если общая численность населения на Земле, начиная с 1970 г., увеличивалась в среднем на 1,7% в год, то население городов в это же время возрастало ежегодно на 4%.

Вновь прибывающие в растущие города переселенцы часто вынуждены осваивать малопригодные для проживания и подверженные опасным природным процессам участки – склоны холмов, поймы рек, заболоченные и прибрежные территории. Ситуация часто усугубляется отсутствием заблаговременной инженерной подготовки и соответствующей инфраструктуры на вновь осваиваемых территориях и использование для застройки конструктивно небезопасных зданий. Это приводит к тому, что города все чаще оказываются в центре разрушительных стихийных бедствий, где страдания и гибель людей приобретает все более массовый характер.

Всемирная конференция по природным катастрофам, состоявшаяся в мае 1994 г. в Иокогаме (Япония), приняла декларацию, в которой сказано, что борьба за уменьшение ущербов от природных катастроф должна быть важным элементом государственной стратегии всех стран в достижении устойчивого развития. Конференция обратилась ко всем странам перейти на новую стратегию борьбы с природными катастрофами, основанную на прогнозировании и предупреждении. Необходимость этого вызвана следующими обстоятельствами.

До недавнего времени усилия многих стран по уменьшению опасности стихийных бедствий были направлены на ликвидацию последствий природных явлений, оказание помощи пострадавшим, организацию спасательных работ, предоставление материальных, технических и медицинских услуг, поставку продуктов питания и т.д. Однако необратимый рост числа катастрофических событий и связанного с ними ущерба делает эти усилия все менее эффективными. Поэтому и была выдвинута в качестве приоритетной новая стратегия: прогнозирование и предупреждение природных катастроф. В основу новой концепции необходимо взять глобальную культуру предупреждения, основанную на научном прогнозировании грядущих катастроф. “Лучше предупредить стихийное бедствие, чем устранять его последствия”, – так записано в итоговом документе иокогамской конференции. Международный опыт показывает, что затраты на прогнозирование и обеспечение готовности к природным событиям чрезвычайного характера до 15 раз меньше по сравнению с предотвращенным ущербом.

Новая стратегия дает возможность перейти на экономическое планирование и развитие с учетом природных рисков, что позволит существенно сократить социальные и материальные потери, явится важным элементом устойчивого развития экономики.

Принимая решения об инвестициях в районы, подверженные природным опасностям, необходимо учитывать риск, а расходы на его предотвращение или снижение включать в экономический анализ. Следуя таким путем, можно осуществлять дополнительное инвестирование в отдельные регионы, необходимое для строительства сооружений, устойчивых к тому или иному воздействию стихии, повышения комфортности сооружений в неблагоприятных климатических условиях, инженерной подготовки территорий, разработки социальных программ и т.д. Только такой подход может обеспечить управление природными катастрофами и тем самым — устойчивое развитие.

Но помимо природных, человеку угрожают еще техногенные опасности, такие как аварии и катастрофы на транспорте, пожары и взрывы на объектах, аварии с выбросом ядовитых химических веществ, ядерные аварии.

За последние тридцать лет весь мир стал свидетелем многообразия, сложности и масштабности катастроф в сложной системе человек – машина. Катастрофа на Чернобыльской АЭС, гибель атомных подводных лодок «Комсомолец» и «Курск», американского космического челнока «Шаттл», неоднократные разрывы нефтепроводов с большим разливом нефти, катастрофы самолетов, транспортных и пассажирских судов на море, взрывы на складах боеприпасов, крупномасштабные пожары на производстве, взрывы с обрушением жилых домов в разных регионах мира и т.д. и т.п.

В большинстве случаев техногенные аварии связаны с неконтролируемым, самопроизвольным выходом в окружающее пространства вещества и/или энергии. Самопроизвольное высвобождение энергии приводит к промышленным взрывам, а вещества – к взрывам, пожарам и химическому загрязнению окружающей среды.

Основными источниками техногенных чрезвычайных ситуаций являются потенциально опасные объекты, на которых используют, производят, перерабатывают, хранят или транспортируют радиоактивные, пожаро-взрывоопасные, опасные химические и биологические вещества.

Современный мир настолько насыщен продуктами научно-технического прогресса, что практически любая область деятельности человека сопряжена с техногенными опасностями и рисками. При этом наблюдается весьма тревожная тенденция роста числа техногенных катастроф, приводящих к большим материальным и людским потерям.

Техногенная катастрофа – это следствие умышленных или, чаще всего, неумышленных действий человека. Причинами техногенных катастроф в большинстве случаев являются:

ухудшение технической безопасности и противоаварийной устойчивости;
грубое нарушение требований безопасности руководителями работ, специалистами, персоналом;
чрезвычайная ненадежность работы машин и оборудования из-за высокой степени их износа;
конструктивные недостатки и неисправность оборудования;
увеличение использования в промышленности и производстве доли пожаро-взрывоопасных опасных технологий;
увеличение количества используемых в промышленности и производстве опасных веществ;
усложнение технологий и режимов управления современными производствами.
В настоящее время разрабатывается очень много программ по предотвращению техногенных катастроф, существует множество организаций, разрабатывающих такие программы: Международная организация труда (МОТ), Международная организация гражданской авиации (ИКАО), Международное агентство по атомной энергии (МАГАТЭ), Международная морская организация (ИМО), Организация Объединенных Наций по промышленному развитию (ЮНИДО) и др.

В настоящее время создано множество приборов и устройств, которые помогают предотвратить техногенные катастрофы: многоканальные автоматизированные системы газового контроля и персональные сигнализаторы для своевременного обнаружения, измерения и сигнализации о взрывоопасных концентрациях горючих газов и паров; дозиметрические приборы для оперативного контроля радиационной обстановки, измерения уровня радиоактивного загрязнения, а также проверки и аттестации дозиметрической аппаратуры, рентгеновских кабинетов, промышленных и медицинских электронных установок; рентгеновская аппаратура для неразрушающего контроля различных конструкций и изделий в области нефтяной и газовой промышленности, авиакосмической техники, судостроения, мотостроения и др. Обеспечение техногенной безопасности осуществляется также за счет тепловизионной диагностики энергонасыщенных объектов, зданий, сооружений и различных транспортных средств; поиска утечек и разрывов на нефтепроводах и теплотрассах; выявления пожаро- и взрывоопасных мест перегрева на силовом электрооборудовании и др.

Техногенные опасности и риски существуют во всем мире, и во всем мире ведется поиск новых технологий предотвращения этих катастроф.

1.3. Порядок выявления и оценки обстановки.

В комплексе мероприятий защиты населения и объектов народного хозяйства от последствий чрезвычайных ситуаций важное место занимают выявление и оценка радиационной, химической, инженерной и пожарной обстановки, каждая из которых является важнейшей составной частью общей оценки обстановки, складывающейся в условиях чрезвычайных ситуаций.

Рассмотрим методики оценки обстановки в условиях чрезвычайных ситуаций.

1.3.1. Оценка радиационной обстановки
Под радиационной обстановкой понимают совокупность последствий радиоактивного загрязнения (заражения) местности, оказывающих влияние на деятельность объектов народного хозяйства, сил ГО и населения.

Радиационная обстановка характеризуется масштабами (размерами зон) и характером радиоактивного загрязнения (заражения) (уровнем радиации).

Размеры зон радиоактивного загрязнения (заражения) и уровни радиации являются основными показателями степени опасности радиоактивного заражения для людей.

Оценка радиационной обстановки включает:

определение масштабов и характера радиоактивного загрязнения (заражения);
анализ их влияния на деятельность объектов, сил ГО и населения;
выбор наиболее целесообразных вариантов действий, при которых исключается радиационное поражение людей.
Оценка радиационной обстановки производится методом прогнозирования и по данным разведки.

Изменение уровней радиации на радиоактивно загрязненной территории в общем виде характеризуется зависимостью:

где Р0-уровень радиациив момент времени t0 после аварии (взрыва);

Рt – то же в рассматриваемый момент времени t после аварии (взрыва);

n – показатель степени, характеризующий величину спада радиации во времени и зависящий от изотопного состава радионуклидов (при ядерном взрыве, как известно, n=1.2).

Тогда доза излучения за время от t1 до t2 составит:

Для ядерного взрыва при n = 1.2 получим

D = 5(P1 t1- P2 t2)

Исходными данными для прогнозирования радиационной обстановки при применении ядерного взрыва являются:

время, координаты, вид и мощность ядерного взрыва;
направление и скорость среднего ветра.
Параметры ядерного взрыва штаба ГО получают от постов засечки ядерных взрывов (посты развертываются на территории страны); метеостанции отправляют несколько раз в сутки штабам ГО данные о направлении и скорости среднего ветра.

Средним называется ветер, средний по направлению и скорости во всем слое атмосферы от поверхности земли до максимальной высоты подъема радиоактивного облака. Поскольку высота подъема облака различна и зависит от мощности взрыва, метеостанции передают данные о среднем ветре в слоях: 0-2, 0-4, 0-6, 0-8, 0-10 км. и т.д. увеличивая слой атмосферы на 2 км.

Скорость ветра дается в км/ч, а направление – в градусах.

Однако передача данных о параметрах ядерного взрыва даже в крупные штабы ГО, не говоря уже об объектах народного хозяйства, требует значительного времени, а для принятия своевременных мер защиты (укрытия людей в защитных сооружениях или вывод их из района возможного радиоактивного заражения еще до подхода облака) необходимо знать эти данные практически сразу после взрыва. Знание даже одного параметра – вида ядерного взрыва – дает возможность немедленно оценить обстановку с точки зрения радиоактивного заражения местности.

Вот почему еще до получения данных от специальной системы обнаружения ядерных взрывов необходимо хотя бы ориентировочно оценить эти параметры.

Прогнозирование, осуществляемое обычно в крупных штабах ГО после получения данных о параметрах взрыва, начинается с нанесения на карту (схему) центра (эпицентра) взрыва и зон радиоактивного заражения в виде эллипсов, вытянутых по направлению среднего ветра.

Направление и скорость среднего ветра определяют с учетом мощности взрыва.

Размеры зон радиоактивного заражения в зависимости от вида и мощности взрыва, а также скорости среднего ветра определяют по справочникам.

Оценка радиационной обстановки по данным прогноза в крупных штабах ГО также осуществляется с помощью официальных справочников.

1.3.2. Оценка химической обстановки
Под химической обстановкой понимают совокупность последствий химического заражения местности сильнодействующими ядовитыми веществами (СДЯВ) или отравляющими веществами (ОВ), оказывающих влияние на деятельность объектов народного хозяйства, сил ГО и населения.

Химическая обстановка создается в результате разлива (выброса) СДЯВ или применения химического оружия с образованием зон химического заражения и очагов химического поражения.

Оценка химической обстановки включает:

определение масштабов и характера химического заражения;
анализ их влияния на деятельность объектов, сил ГО и населения;
выбор наиболее целесообразных вариантов действий, при которых исключается поражение людей.
Оценка химической обстановки производится методом прогнозирования и по данным разведки.

На объектах народного хозяйства химическую обстановку выявляют посты РХН, звенья и группы радиационной и химической разведки.

Исходными данными для оценки химической обстановки являются:

тип и количество СДЯВ, средств применения химического оружия и тип ОВ;
район и время выброса (вылива) ядовитых веществ, применения химического оружия;
степень защищенности людей;
топографические условия местности и характер застройки на пути распространения зараженного воздуха;
метеусловия (скорость и направление ветра в приземном слое, температура воздуха и почвы, степень вертикальной устойчивости воздуха).
Различают три степени вертикальной устойчивости воздуха: инверсию, изотермию и конвенкцию.

Инверсия возникает обычно в вечерние часы примерно за 1 ч до захода солнца и разрушается в течение часа после его восхода.

При инверсии нижние слои воздуха холоднее верхних, что препятствует рассеиванию его по высоте и создает наиболее благоприятные условия для сохранения высоких концентраций зараженного воздуха.

Изотермия характеризуется стабильным равновесием воздуха.

Она наиболее характерна для пасмурной погоды, но может возникать также и в утренние и вечерние часы как переходное состояние от инверсии к конвенкции (утром) и наоборот (вечером).

Конвенкция возникает обычно через 2 часа после восхода солнца и разрушается примерно за 2-2.5 часа до его захода.

Она обычно наблядается в летние ясные дни.

При конвенкции нижние слои воздуха нагреты сильнее верхних, что способствует быстрому рассеиванию зараженного облака и уменьшению его поражающего действия.

Оценка химической обстановки на объектах, имеющих СДЯВ, проводится с целью организации защиты людей, которые могут оказаться в очаге поражения.

При оценке химической обстановки методом прогнозирования принимается условие одновременного разлива (выброса) всего запаса СДЯВ на объекте при благоприятных для распространения зараженного воздуха метеоусловий (инверсия, скорость ветра 1 м/c).

При аварии (разрушении) емкостей со СДЯВ оценка производится по фактически сложившейся обстановке, т.е. берутся реальные количества вылившегося (выброшенного) ядовитого вещества и метеоусловия.

При этом необходимо иметь ввиду, что ядовитые вещества, имеющие температуру кипения ниже 20 ¼С (фосген, фтористый водород и т.п.), по мере их разлива сразу же испаряются и количество ядовитых паров, поступающих в приземный слой воздуха, будет равен количеству вытекшей жидкости. Ядовитые жидкости, имеющие температуру кипения выше 20 ¼С (сероуглерод, синильная кислота и т.п.), а также низкокипящие жидкости (сжиженные аммиак и хлор, олеум и т.п.) разливаются по территории объекта и, испаряяь, заражают приземный слой воздуха.

Оценка химической обстановки на объектах, имеющих СДЯВ, предусматривает определение размеров зон химического заражения воздуха к определенному рубежу (объекту), времени поражающего действия и возможных потерь людей в очаге химического поражения.

1.3.3. Оценка инженерной обстановки
Под инженерной обстановкой понимается совокупность последствий воздействия стихийных бедствий, аварий (катастроф), а также первичных и вторичных поражающих факторов ядерного оружия, других современных средств поражения, в результате которыэ имеют место разрушения зданий, сооружений, оборудования, коммунально-энергетических сетей, средств связи и транспорта, мостов, плотин, аэродромов и т.п., оказывающих влияние на устойчивость работы объектов народного хозяйства и жизнедеятельность населения.

Оценка инженерной обстановки включает:

определение масштабов и степени разрушений элементов и объекта в целом (степени разрушения зданий, сооружений, коммунально-энергетических сетей и др., в том числе защитных сооружений для укрытия рабочих и служащих; размеров зон завалов; объема и трудоемкости инженерных работ);
анализ их влияния на устойчивость работы отдельных элементов и объекта в целом, а также на жизнедеятельность населения.
Оценка инженерной обстановки производится на основе сочетания данных прогноза и инженерной разведки.

Исходными данными для оценки инженерной обстановки являются: сведения о наиболее вероятных стихийных бедствиях, авариях (катастрофах), противнике, его намерениях и возможностях, характеристики защитных сооружений для укрытия рабочих и служащих, инженерно-технического комплекса объекта.

1.3.4. Оценка пожарной обстановки
Под пожарной обстановкой понимается совокупность последствий стихийных бедствий, аварий (катастроф), и т.п., в результате чего возникают пожары, оказывающие влияние на устойчивость работы объектов народного хозяйства и жизнедеятельность населения. Оценка пожарной обстановки включает:

определение масштаба и характера (вида) пожара (отдельные очаги, сплошные пожары, пожары в завалах, низовые, верховые, подземные, степные);
скорость и направление пожара;площади зон задымления и время сохранения дыма и др. анализ их влияния на устойчивость работы отдельных элементов и объекта в целом, а также на жизнедеятельность населения;
выводы об устойчивости объектов к возгоранию и рекомендации по ее повышению.
Оценка пожарной обстановки производится на основе сочетания данных прогноза и пожарной разведки.

Исходными данными для прогнозирования являются: сведения о наиболее вероятных стихийных бедствиях, авариях (катастрофах), данные о пожаро- и взрывоопасности объектов, окружающей среды и населенных пунктов, метеорологических условиях, рельефе местности.
УчМаг

Страницы: 1 2 3 Single Page

Оставить комментарий

При копировании материала с данного сайта присутствие ссылки обязательно!

Top.Mail.Ru